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A B S T R A C T   

Automated bee counters advanced over the last hundred years and became increasingly diverse. However, to 
date, there is no method for standardized validation of counting accuracy and thus no reliable data on daily bee 
losses, or background mortality in colonies. However, such data are in urgent need by regulators to establish 
future guidelines for pesticide risk assessment. In this work, existing approaches were combined to form a novel 
protocol for validating bee counters. In a case study, we demonstrated that the protocol is sufficiently feasible to 
determine the measurement accuracy of a commercial counting system. Measurement accuracy was modeled by 
the difficulty of specific measurement conditions. Daily loss, i.e., the difference between incoming and outgoing 
bees, can be used to assess colony health, environmental impacts, and infer the effect of pesticides on bee col-
onies. The developed protocol makes innovations in this field measurable and creates a foundation for the 
benchmarking of different types of bee counting systems. We discuss how it can be utilized in an effort to move 
the sector forward in the future.   

1. Introduction 

Bee pollinators are not only of great importance for ecosystems 
(Ollerton et al., 2011) but also make a major economic contribution to 
us through their ecosystem services (Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services (IPBES), 2016). This 
pollinator group, however, has been suffering from a decline for quite 
some time, affecting already 37% of European bee species (Biesmeijer 
et al., 2006; National Research Council, 2007; European Commission 
et al., 2016) and, posing a threat to global food security and nutrition. 
Honey bees have not been affected by this decline, and the number of 
bee colonies worldwide has almost doubled since they were recorded in 
the 1960s (FAOSTAT, 2021). Regardless, they represent an essential part 
of pollination ecology and, in part, have become an important model 
organism for investigating the drivers of bee decline (National Research 
Council, 2007). 

Because pesticides are suspected of being one of these drivers, the 
European Food Safety Authority (EFSA) was tasked with developing 
more stringent guidelines for the risk assessment of pesticides (EFSA 

Panel on Plant Protection Products and their Residues (PPR), 2012; 
European Food Safety Authority, 2013). Since “[t]he viability of each 
colony, the pollination services it provides, and its yield of hive products 
all depend on the colony’s strength and, in particular, on the number of 
individuals it contains” (European Food Safety Authority, 2013), EFSA 
has formulated specific protection goals (SPGs) aligned to colony size 
and mortality. Thus, characteristics worth protecting can be collectively 
assessed by evaluating daily bee losses. However, high-quality data on 
background mortality, i.e. the natural daily loss of (forager) bees are 
scarce. 

To monitor even small changes in bee mortality, tools are needed 
that can accurately count bees entering and leaving the hive. For the vast 
majority of electronic bee counters, determining daily losses is, thus, of 
primary interest (Odemer, 2021). Since foragers usually fly only during 
the day and return to the hive at dawn, observation intervals of 24 h are 
well suited and suggested by EFSA as a reference (European Food Safety 
Authority, 2013). 

The ability to accurately count bees is not only important from a 
regulatory perspective, but also relevant to scientists, beekeepers and 
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other ecotoxicological issues. Beekeepers are provided, for example, 
with the means to evaluate the quality of sites, to observe swarm 
behaviour and colony development. If abnormalities occur, counting 
data helps to find the underlying causes. Pham-Delégue et al. (2002) call 
for sublethal effects, such as sensory impairment and associated effects 
on foraging behavior, to be routinely recorded in addition to lethal ef-
fects of pesticides and considered in risk assessment, e.g., through the 
use of newly developed bee counting systems (see Chmiel et al. (2020) 
on sublethal effects). Schuhmann et al. (2022) point out that ecotoxi-
cological studies of individual plant protection products in the labora-
tory can be rather artificial, as field studies often involve mixtures of 
pesticides and their interactions are not well understood. However, field 
studies take place under more realistic conditions and lethal effects can 
be accurately determined with bee counters. Bermig et al. (2020) 
consider the determination of activity and background mortality in a 
control population a good way to quantify both sublethal and long-term 
effects. The EFSA guidance document contains more than a hundred, 
rather unreliable, publications on background mortality, many of which 
could have been greatly simplified by the use of automated bee counters 
(European Food Safety Authority, 2013). Accurate determination of bee 
losses thus goes hand in hand with accurate determination of bee ac-
tivity, which also has wide-ranging applications. For example, Danka 
and Beaman (2007) used electric bee counters to compare the pollina-
tion performance of different bee species based on the number of flights 
recorded. 

Over the last hundred years, several technical devices have been 
tested on beehives, which today form the basis of precision beekeeping 
(Zacepins et al., 2012). Scales, thermometers, hygrometers, anemome-
ters, microphones, radar, photoelectric sensors, capacitive sensors, and 
RFID transmitters have been used to monitor bee health (for a descrip-
tion of some methods, see Zacepins et al. (2015), Marchal et al. (2020), 
Odemer (2021)). Within precision beekeeping, these technologies are 
divided into three categories: (1) Sensors that collect data at the apiary 
level, (2) at the colony level and (3) at the level of single individuals 
(Zacepins et al., 2015). Bumanis et al. (2020) describe how, even with 
sensors of different categories, multi-modal data from bee-related 
sources can be merged through data fusion. 

However, bee counters, which belong to category (3), form only a 
small part of the sensors found on hives. Two of the first devices regis-
tered counts based on the weight of the bees, however, technical 
development allowed the implementation of novel methods. From 
(infrared) photoelectric sensors to capacitive sensors and camera-based 
methods, many ideas have emerged. In recent years, the trend has been 
towards camera-based methods (Odemer, 2021). The reasons are lower 
maintenance, greater potential, and the possibility of less invasive data 
collection. Camera-based methods do not require special tunnels that 
could get dirty or blocked. Further potential lies in the additional clas-
sification of tracked objects (e.g., workers, drones, and intruders) 
(Marstaller et al., 2019), classification of tracked behavior (e.g., ther-
moregulation and guarding) (Kridi et al., 2016), and detection of para-
sites (Schurischuster et al., 2018) and corbicular pollen loads (Sledevič, 
2018; Marstaller et al., 2019). A comprehensive historical overview of 
the development of automatic bee counters was presented by Odemer 
(2021). 

Despite a large number of counting systems, Odemer (2021) criti-
cizes the lack of standardized methods for determining the accuracy of 
bee counters. His review of 38 different bee counters shows that 63% of 
them were not validated at all, while of those that included information 
on precision, 17% did not include information on the methodology used 
for validation. Without proper evaluation of counting systems, com-
parison of different counters is not possible and interpretation of 
counting results is limited. Therefore, Odemer calls for a validation 
standard for bee counters (Odemer, 2021). 

This paper is intended to make a scientific contribution in two ways. 
It (1) reviews previous assessment approaches, highlights the difficulties 
of meaningful assessment, and derives a novel protocol for determining 

the accuracy of daily losses. (2) A commercial video-based bee counter is 
used to test the protocol for practicality in a case study. The protocol 
combines three existing assessment methods found in the literature 
which are subsequently presented. 

2. Literature review on bee counter evaluation methods 

As an example of why validation is important, Fig. 1 illustrates three 
possible measurement results concerning the evaluation of bee counters. 
Fig. 1A shows two measurement curves (solid lines) of faulty bee 
counters. One gives only zero values, the other measures noise. Fig. 1B 
shows the trace of a systematically biased bee counter (solid line). In this 
case, the counter misses a portion of the returning bees. The systematic 
bias results in an unrealistically high daily loss indicated by the high 
number of bees that are supposedly still outside the hive at the end of the 
day. Fig. 1C shows the trace of a stochastically biased counting system 
(solid line). The counting system provides values that are sometimes too 
large and sometimes too small, with no preferred direction. 

The evaluation of a bee counter aims at excluding malfunctioning 
counters (Fig. 1A), quantifying possible biases (Fig. 1B, C), and deter-
mining the accuracy of daily loss measurements. The procedure in cases 
(B) and (C) is not straightforward because the true 24-h bee count is 
neither known nor determinable: it is impossible to obtain the true bee 
count by manually counting the number of incoming and outgoing bees 
in real-time (Odemer, 2021). Bermig et al. (2020) noted that manual 
counting of bees in short video sequences was only possible at 0.3 times 
the speed and had to be done separately for each of the 24 entrance and 

Fig. 1. Example illustrations of measurement time series’ of malfunctioning 
bee counters. The true but unknown measurement series is illustrated by dotted 
lines. The grey area marks the period when flight activity is expected. (A) 
Measurement series of two faulty counting devices, one measuring zero-values, 
one measuring noise. (B) Measurement series of a systematically biased 
counting device. A certain percentage of incoming bees are missed, leading to 
high measured losses at the end of the day. (C) Measurement series of sto-
chastically biased counting device. 
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exit tubes of the system. This indication is also consistent with the au-
thors’ experience that it requires about four hours to correctly capture 
all the bees in a one-minute video at a very high bee density and 40 
frames per second. Meikle and Holst’s assessment that “the use of human 
observation, while probably accurate, clearly limits the time in which 
the hive can be observed due to fatigue” (Meikle and Holst, 2015) is 
shared by many other researchers (Rosenquist, 2019; Tausch et al., 
2020; Bermig et al., 2020). 

Despite these difficulties, there are approaches to partial evaluation 
of bee counters. 

2.1. Evaluation by observation 

Evaluation by manual observation is the most widely used evaluation 
technique (Odemer, 2021) and has been used in numerous studies 
(Campbell et al., 2008; Jiang et al., 2016; Ngo et al., 2019; Bermig et al., 
2020; Kulyukin et al., 2021). Experimenters note short periods, rarely 
longer than 3 min, and compare their observations with their mea-
surements. Odemer (2021) describes various ways to make such com-
parisons. The annotation is time-consuming and the benefit is small. A 
brief example illustrates the problem. For 60-s samples, the smallest 
detectable error is one bee per minute. Therefore, a counting system is 
either error-free (to the best of our knowledge, no such system exists 
today) or has a sampling error of at least one bee per minute. At this 
point, there is no reason to consider this error as stochastic, but we must 
assume that the errors add up and do not level off. It follows that the 
error in a 24-h time interval could be (up to) 1440 bees. The EFSA 
(European Food Safety Authority (EFSA), 2020) states the general nat-
ural background mortality rate at 3.75% after reviewing the literature. 
To determine a 10% increase in mortality, it is necessary to distinguish 
the loss of 375 bees from 413 bees in a colony of 10,000 bees. Therefore, 
the resolution of such an evaluation method cannot meet the re-
quirements. This problem does not arise with the robbers test described 
below because the need to annotate the data is conveniently avoided. 
However, the sample evaluation has a key advantage. Unlike the robbers 
test, a bad bee counter in a given sample will always give bad results, 
while a good counter will always give good results. 

2.2. Robbers test evaluation 

To evaluate the BeeSCAN bee counter reliably and realistically, 
Struye (2001) described a novel experimental setup, which the author 
calls the ‘robbers test’. In this test, the counting device replaces the 
bottom of an empty hive containing only a food source (robber hive). 
This food attracts robbers from nearby colonies that can only reach the 
food by passing through the counter and vice versa. At the end of the 
day, the difference of incoming and outgoing bees must be zero as bees 
will abandon the food source before sunset (corrected for the number of 
(dead) bees remaining in the hive) (Struye, 2001; Bermig et al., 2020; 
Odemer, 2021). Although the underlying count events can be in the 
order of hundreds of thousands, the robbers test provides only one data 
point per day, which is the deviation from zero. 

While it is true that a good bee counter should achieve a difference 
close to zero, the opposite conclusion is false. A poor counter may pro-
duce a good result (see Fig. 1A). An extreme example is a counter that 
gives only zero counts and thus achieves the best possible result in the 
robbers test. Beyond this limiting case, however, the robbers test also 
fails in more realistic situations. For example, a perfect counter is 
indistinguishable from a counter with arbitrarily strong symmetric error 
(see Fig. 1A, C). Another problem not named by Struye (2001) is the 
observation that the movement patterns of the bees change due to the 
setup of the robbers test. The bees move through the sensor passages 
more goal-oriented, and long dwell times in the passages are rather the 
exception (Rosenquist, 2019, p. 39). This behavioral variation tends to 
underestimate the error rate, as long dwell times generally complicate 
the counting problem (Liu et al., 1990). In addition, no activity is 

expected at the feeder in the darkness that would occur under normal 
conditions (Bermig et al., 2020; Odemer, 2021). Because recording in 
darkness is particularly difficult for camera-based bee counters, the 
robbers test for such systems may further underestimate the error. 

2.3. Evaluation by literature comparison 

Evaluation methods based on comparison with literature or expertise 
work differently. For example, Ngo et al. (2019) and Gonsior et al. 
(2020) evaluated their counters through ecotoxicological studies. For 
this purpose, a group of bee colonies was exposed to insecticides known 
to have negative effects on the flight behavior and homing ability of 
bees. The authors demonstrated that their counter was able to detect a 
significant group difference compared to untreated colonies and 
concluded that the bee counter was functional. 

Other methods include the correlation of bee counts with tempera-
ture, humidity, and solar radiation (Rickli et al., 1989; Liu et al., 1990; 
Chen et al., 2015; Jiang et al., 2016; Ngo et al., 2019). These factors are 
known to affect flight activity, and therefore the observation of strong 
correlations demonstrates the principle operability of bee counters. Liu 
et al. (1990), Chen et al. (2015), Jiang et al. (2016) also compared the 
measured data with extreme weather events and found, for example, a 
decrease in flight activity associated with rain. Rickli et al. (1989) 
correlated the measured activity with different colony sizes. A positive 
correlation at this point is consistent with expectation and can again be 
interpreted as an indication of a functioning bee counter. 

All methods that attempt to confirm correlations known from the 
literature help to identify faulty bee counters. However, they are not 
suitable for quantifying the accuracy of daily loss measurements. 

2.4. Rationale for a new evaluation protocol 

At the current state of understanding, two things are noteworthy. 
First, the challenge of determining daily loss in an automated manner 
with accuracy suitable for regulatory risk assessment has not yet been 
solved. Second, there is a lack of sufficient evaluation of existing systems 
(Rickli et al., 1989; Odemer, 2021). Marchal et al. (2020) attribute the 
difficulty of bee counting to the large number of similar insects that must 
be observed noninvasively under turbulent conditions. 

A large number of counting systems, the variety of sensors used, and 
the need for an accurate bee counting system require a robust evaluation 
protocol to determine daily losses. None of the evaluation procedures 
found in the literature can rule out malfunctioning bee counters and 
quantify the remaining errors as daily loss uncertainties. Table 1 shows 
that the robbers test alone is not capable of detecting malfunctioning 
counters, as shown in Fig. 1A. However, the advantage of the test is that 
it reveals errors that build up over long periods (Fig. 1B). In particular, 
the conclusion that a good robbers test result indicates a well-working 
bee counter is incorrect. In contrast, evaluation by observation is a 
more accurate and reliable version of literature comparison. Both 
methods indicate the degree of correlation between measurements and 

Table 1 
Capabilities of different evaluation approaches. None of the methods is suitable 
for determining the uncertainties of daily loss measurements.  

Capability/ Evaluation approach Evaluation by 
observation 

Robbers 
test 

Literature 
comparison 

Find malfunctioning bee 
counters by ensuring a 
minimum correlation between 
measurements and actual 
flight counts. 

yes no to some extent 

Distinguish between stochastic 
and systemic errors. 

no yes to some extent 

Quantify daily loss uncertainties. no to some 
extent 

no  

P. Borlinghaus et al.                                                                                                                                                                                                                            



Computers and Electronics in Agriculture 197 (2022) 106957

4

actual flight counts. However, their results are not directly transferable 
to the accuracy of daily losses. 

3. Harmonised evaluation protocol for daily loss measurements 
of honey bee colonies 

Various studies have shown that the accuracy of a bee counter de-
pends to some extent on external factors. One important factor affecting 
the performance of all bee counters is the activity of the bees themselves. 
Counters that use tunnels for separation, for example, are unable to 
distinguish bees that are moving closely together (Liu et al., 1990; 
Bermig et al., 2020). Crowding of bees causes Spangler (1969) to 
recommend his bee counter only for very small colonies, and Struye 
(2001) to guarantee correct measurements only when bees are no closer 
than one millimeter. Such factors may vary from system to system. 
Campbell et al. (2008) report that shade, debris, and intense bee 
movement negatively affect the performance of their system. Jiang et al. 
(2016) reported reflections and strong ‘nervosity’ of the bees as addi-
tional sources of error. 

To ensure that a counting system works well in all relevant situations 
(scenarios), it is useful to determine such performance factors. For each 
scenario, an evaluation by observation is proposed (see Section 2.1). If it 
has been determined that only small deviations occur for all scenarios, 
the next step is to check whether these small deviations add up over one 
day. For this purpose, several robbers tests are performed (see Section 
2.2). A large deviation from the target value of the robbers test of zero 
indicates either a very large stochastic error or a (small) systematic bias 
of the counting system. However, larger errors could already be 
excluded due to the sufficiently good performance in the evaluation by 
observation. Any systematic biases need to be further investigated and 
corrected. To estimate the uncertainties for any day, it is necessary to 
relate the deviations of the robbers tests to the difficulty of the mea-
surement conditions, i.e., the performance factors. 

The difficulty of the measurement conditions results directly from 
the scenarios that comprise the day being studied. It is to be expected 
that a robbers test that consists to a large extent of difficult scenarios, e. 
g. due to flight-friendly weather, will lead to measurement errors more 
frequently than a rainy day that may be composed of particularly simple 
scenarios. By modeling the performance of the robbers test based on the 
measurement conditions, the expected measurement errors for a given 
day can be predicted based on their difficulty. The following nine-step 
procedure implements these ideas. This section is followed by the case 
study, which provides further guidance for practical implementation. 

3.1. Evaluation step 1: Performance factors 

An operator expert for the bee counter being evaluated determines 
all relevant factors that affect the performance of the counter. For 
practicality, it must be ensured that each performance factor can be 
determined robustly and automatically. This means that for non-camera- 
based bee counters, without further ado, there is only one performance 
factor at hand, the activity determined with the counter itself. Caution is 
required as in this case the counter itself is involved in the evaluation. 
Apart from this particularity, there are no differences for other bee 
counting approaches. Example: A large number of bees and infrared 
lighting have a negative effect on counting accuracy and represent the 
performance factors. 

3.2. Evaluation step 2: Deriving the scenarios 

All (reasonable) combinations of performance factors are created 
and corresponding scenarios are derived. Example: “Few bees move 
slowly under infrared lighting” is considered as a scenario. 

3.3. Evaluation step 3: Scenario annotation 

For each scenario, corresponding samples must be collected and 
manually labeled. These annotations are considered as ground truth in 
the next step. Example: For each scenario, 10, 20, or 30-s videos are 
annotated. 

3.4. Evaluation step 4: Scenario evaluation-by-observation 

All annotated videos are processed with the counting system and 
compared with the ground truth. However, the metric for a good match 
is open and a suitable metric must be found. The most intuitive metric 
for the performance of a bee counter is the deviation of the inputs and 
outputs from their true values. However, due to the short duration, some 
scenarios contain bees but no counting events. A metric based solely on 
counting events is bound to be poorly resolved, especially for short 
duration, and does not take advantage of the information underlying the 
count. It is advisable to use metrics that can handle all types of scenarios. 
For example, the Multiple Object Tracking Accuracy metric (Bernardin 
et al., 2006) is determined by the number of false-positive detections, 
false-negative detections, and id switches. Since many more data points 
are included, more accurate performance information is obtained. It is 
suitable for any video-based counting device and any scenario that 
contains at least one annotated object. Counters for which no informa-
tion is available other than the number of counting events (e.g. counters 
that solely use photoelectric or capacitive sensors) must fall back on the 
deviation of ingoing and outgoing bees. 

3.5. Evaluation step 5: Scenario difficulty rating 

All scenarios are rated on a difficulty scale from zero to one. The 
scenario that achieved the best result in the previous step is assigned 
difficulty level zero, and the scenario with the worst result is assigned 
difficulty level one. All other scenarios are rated accordingly between 
the easiest and the most difficult scenario. When rating, the relative 
differences are maintained. This transformation serves to make the re-
sults easier to interpret and independent from the metric chosen in the 
previous step. 

3.6. Evaluation step 6: Robbers tests 

Robbers tests are carried out during several days and, if possible, 
with different colonies if a tunnel tent is used (Odemer, 2021). Since 
flight activity in a robbers test scenario is usually lower than in full-sized 
colonies, a reduction in bee traffic should be avoided where possible. 
This means that the food source in the robber hive should be highly 
attractive (e.g., honeycombs) and should last for at least several days to 
generate as much flight activity as possible. In addition, weather con-
ditions must stimulate bees to forage, and bee density should ideally be 
high within 2 km of the robber hive. If the trials are conducted in a 
tunnel tent to prevent the spread of robbing to neighboring colonies or to 
prevent disease, the experiments should be conducted with strong col-
onies with more than 20,000 bees. 

3.7. Evaluation step 7: Difficulty of robbers tests’ measurement conditions 

For each robbers test, the measurement conditions are evaluated. 
The difficulty of the measurement conditions of a day is the weighted 
difficulty of the scenarios that comprise the studied day. For this pur-
pose, the time intervals of the day must be matched with the scenario 
that is most analogous to it. 

3.8. Evaluation step 8: Modelling accuracy based on the difficulty of the 
measurement condition 

The influence of the measurement conditions (‘difficulty’) on the 
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performance of the bee counter is determined using an appropriate 
model class (e.g. linear or polynomial models). There should be a pos-
itive correlation between the difficulty of the test day and the accuracy 
of the bee counter. 

3.9. Evaluation step 9 (optional): Plausibility check 

It might be useful to additionally compare the measured loss with the 
loss expected from the literature or to show correlations with light in-
tensity or temperature. Rosenquist wrote: “Long-term observations over 
several weeks under regular conditions do not provide accurate refer-
ence values. Nevertheless, they were very important for functional 
verification” (Rosenquist, 2019). 

4. Case study 

4.1. Materials & method 

The range of commercial bee monitoring solutions capable of 
detecting daily losses is limited. US-based Keltronix Inc. offers Eye-
sonhives, a camera-based monitoring solution (Keltronix, 2022). How-
ever, as the system determines the level of flight activity in front of the 
hive without direction, it is unable to determine numbers for incoming 
and outgoing bees. Similarly, BeeScanning (2022), BeeAndme (2022), 
Arnia (2022) offer different tools and sensors, that also do not allow 
direct conlusions to be drawn about daily losses. BeeCheck, which was 
developed for the specific purpose of counting bees by the Federal 
Research Centre for Cultivated Plants (JKI) (2022), has not yet reached 
product status. Hiverize (2022) provides building instructions for 
monitoring bees, but these are limited to weather data and weight 
measurements. Of particular note is the BeeSCAN system, but develop-
ment stopped more than 18 years ago (Lowland Electronics, 2022; 
Struye, 2001). In addition, Beehivemonitoring (2022) offers a non- 
camera-based module for counting bees. 

However, the monitoring technology of the company apic.ai was 
chosen because it is a self-designed, state-of-the-art, and commercially 
available bee counter. It is not a simple counting device, since among 
other things the corbicular pollen loads can also be quantified visually. 
Regardless, the system will be referred to as a bee counter for this paper. 
It consists of a camera unit attached to the entrance of the hives and the 

software BRAT (Bee Recognition and Tracking), which analyzes the 
collected image data. The camera is the Raspberry Pi Camera (2.1) with 
an IMX219 sensor and a resolution of 0.168 millimetres per pixel. An 
Nvidia Jetson Nano acts as the controller, which is battery-buffered and 
powered by a solar cell. True-colour LEDs with a high CRI value serve as 
the light source. 

All bees pass through the camera’s field of view as they enter and 
leave the hive. In the camera unit, a plastic glass prevents the bees from 
crawling over each other, but grouping is still possible. The camera unit 
is shown in Fig. 2. Fig. 3 shows how the video data was processed. The 
exact evaluation procedure is described below and follows exactly the 
protocol proposed in Section 3. 

In addition, the “Hohenheimer Einfachbeute” with Zander frames 
and queenright colonies of different and local A. mellifera subspecies 
were used. Bees had shown no visual signs of diseases and were main-
tained by a professional beekeeper. To attract enough robber bees, we 
used honeycombs with stored honey (approx. 2 kgs per comb). The 
feeding regime followed a weekly or bi-weekly interval and is displayed 
together with the case study timeline in the appendix (Figure A.1). 

4.2. Procedure & results 

4.2.1. Evaluation step 1: Performance factors 
Three performance factors based on experience and literature were 

considered. These were (i) the number of bees in the field of view of the 
camera, (ii) the type of lighting (infrared/white light), and (iii) the de-
gree of crowding (Spangler, 1969; Liu et al., 1990; Bermig et al., 2020). 
Looking more closely at video samples, the total number of bees was less 
relevant and is already included in their degree of crowding. Since it is 
assumed that infrared light has no effect on bee behaviour (Barker, 
1972), the use of infrared light is generally recommended between dusk 
and dawn. However, in this case study, the counting device was not 
attached to the beehive itself, but an “empty” robber hive. Therefore, for 
convenience, it was decided not to switch from white light to infrared 
light since the bees were not in the robber hive during the night hours. 
This also means that lighting did not have to be considered as a factor in 
the evaluation. 

The remaining crowdedness factor was determined as presented in 
Fig. 4. The crowdedness score ranges from zero to one and expresses the 
proportion of the image area covered by densely crowded bees. The 

Fig. 2. The camera unit of the apic.ai monitoring technology in use. The system is mounted to the entrance in front of the hive and can be easily removed for 
maintenance. 
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choice of performance factors was then confirmed, as a strong and sig-
nificant negative correlation was found between the quality measure 
chosen in step (4) and the crowdedness factor described here (details on 
the correlation are found in step (4)). It can therefore be assumed that no 
relevant performance factors were overlooked in this case study. 

4.2.2. Evaluation step 2: Deriving the scenarios 
Since only one relevant performance factor was found, the compi-

lation of the scenarios was not very complex. A total of 59 video clips 
with very different occupancy were selected. Each clip was ten seconds 
long and had a frame rate of 40 fps. Fig. 5 shows example frames from 
three scenarios that differ greatly in their crowdedness score. Note that 
the crowdedness score is only indirectly related to the number of bees. 

Fig. 3. The video data is first stored locally and then transferred to the cloud where CNN based localisation, tracking and counting is carried out.  

Fig. 4. Determination of the crowdedness factor in 
input images. From left to right: (A) A section of the 
raw camera image. (B) Foreground-background sep-
aration with simple thresholds. (C) A (Gaussian) blur 
version from image (B), revealing areas of densely 
crowded bees. (D) Result of thresholding for image 
(C). The contours show the portion of the input 
image where densely crowded bees were located. 
The crowdedness value indicates the proportion of 
the highlighted contour to the total area. In the 
present case, the crowdedness is approximately 34%.   

Fig. 5. Sample images from three 10-s scenarios with varying degrees of crowding (A: 0%, B: 4%, C: 34%, D: 91%).  
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For the performance of the bee counter, it is more important how close 
the bees are. While counting the bees in (A) and (B) does not cause any 
problems for man and machine, the same is much more error-prone in 
(C) and (D). 

4.2.3. Evaluation step 3: Scenario annotation 
All 59 scenarios in the video clips were annotated. The center of each 

bee was carefully marked on each clip in each frame to obtain the bees’ 
trajectories. With a large number of bees, annotation is extremely time- 
consuming, taking up to 40 min per ten-second video clip. 

The labels must be double-checked, as errors due to operator fatigue 
cannot be ruled out. It was found that even small annotation mistakes 
have strong effects on further analyses (e.g., a video with hardly any 
bees was wrongly classified as the most difficult because a single bee was 
forgotten to be annotated). This must be avoided at all events. 

4.2.4. Evaluation step 4: Scenario evaluation-by-observation 
The general functionality of the bee counter was demonstrated using 

the previously annotated scenarios. The ‘Multiple Object Tracking Ac-
curacy’ (MOTA) (Bernardin et al., 2006) metric was used as a quality 
measure. The MOTA metric takes into account not only the interrupted 
paths of the tracker (#id-switches) but also errors of the detector 
(#false-positive, #false-negative) and is defined for each scenario as: 

MOTA = 1 −
#false-positives +#false-negatives +#id-switches

#labeled objects
(1) 

Since some scenarios (N = 9) contained empty video clips 
(#labeled objects = 0), no MOTA score could be calculated in these 
cases. However, since there were no false-positive detections in all these 
cases, the quality measure was manually set to 1.0. 

Empirical MOTA scores ranged from 0.9401 to 1.0 (Median = 1.0,
IQR = 0.0003), indicating a well-performing system. The vast majority 
of scenarios did not pose a challenge to the system studied, and only 
cases of extreme overcrowding resulted in errors (see Fig. 5 right). In the 
most extreme scenario, N = 102 individuals and a total of N = 29 846 
positions were annotated. In this case, the number of errors was 17.52 
per path (individual). A correlation analysis showed that the MOTA 
scores of the scenarios and the crowdedness factors were highly corre-
lated (Pearson’s r = − 0.8953,p = 1.1× 10− 21. 

Despite the good result, it cannot yet be ruled out whether the 
remaining errors accumulate over the day (i.e. are systematic) or not. At 
this point, information from the robbers test is missing to be able to 
make statements about longer periods. 

4.2.5. Evaluation step 5: Scenario difficulty rating 
The performance score MOTA of each scenario is transformed ac-

cording to the protocol and represents the difficulty of the measurement 

condition in the following. That is, the scenario with the best score 
(MOTAbest = 1.0) in the previous step is assigned difficulty zero, and the 
scenario with the worst score (MOTAworst = 0.9401) is assigned diffi-
culty one. Thus, for each scenario i its difficultyi can be calculated from 
its performance score pi: 

difficultyi =
pbest − pi

pbest − pworst
(2)  

4.2.6. Evaluation step 6: Robbers tests 
The robbers tests were carried out in Braunschweig, Germany in the 

period from 23/09/2021 to 14/10/2021. Additional information on the 
timeline and conduct of the robbers tests can be found in the appendix in 
figures A.1, A.2 and A.3. Due to bad weather, the opening of boxes to 
restock honeycombs, maintenance of the system, and missing data, most 
days had to be discarded, as even the shortest periods without data can 
have fatal implications for the evaluation. The remaining four complete 
measuring days are shown in Fig. 6 and were made publicly available 
(Borlinghaus et al., 2022). A typical activity pattern of entries and exits 
can be observed, which is strongly related to the diurnal pattern 
(Crailsheim et al., 1996) although the measurements took place towards 
the end of the season. While in occupied hives activity can usually be 
measured at night, too (Crailsheim et al., 1996), in robber hives there is 
neither thermoregulation nor guard bees or regular activity after dark as 
the box is empty. 

From previous experiences, we knew that the general flight activity 
in robbers tests is lower than in a full-sized colony. For this reason, the 
experimental design of (Bermig et al., 2020) was modified and tunnels 
were omitted. At the site, about 60 colonies were situated in the flight 
radius, which could potentially visit the robber hive. As a result, the bees 
sometimes fought violently at the hive entrance. These behavioral 
changes, however, had a positive effect on crowding and complicated 
the measurement conditions, contradicting Rosenquist’s (Rosenquist, 
2019) observation that bees move in and out of the hive quickly rather 
than dwell at the entrance in the robbers test. 

Subtracting outgoing bees from incoming bees yields daily losses of 
− 1871 bees (01/10/2021, D1), − 828 bees (02/10/2021, D2), − 113 
bees (03/10/2021, D3), and +56 bees (04/10/2021, D4). Since the 
actual ‘loss’ or difference in any robbers test is expected to be zero, the 
values here represent the daily measurement error (Odemer, 2021). 
These errors are net errors since the deviations balance out in both 
directions. 

4.2.7. Evaluation step 7: Difficulty of robbers tests’ measurement conditions 
To determine the difficulty of the measurement conditions of an 

entire robbers test, the video data were divided into 30-s time intervals 
and the ‘crowding’ performance factor was determined for each. These 
factors were used to assign each interval the most similar scenario, and 

Fig. 6. Bidirectional bee movement aggregated in ten-minute intervals as determined by the bee counter. For example, 6 573 bees left the robber hive between 5 pm 
and 5.10 pm on 01/10/21. The first day was preceded by the renewal of the food source. The amount of forage (and the bees’ interest) steadily decreased over the 
next four days. The shaded intervals mark the periods between dusk and dawn. 

P. Borlinghaus et al.                                                                                                                                                                                                                            



Computers and Electronics in Agriculture 197 (2022) 106957

8

the difficulties of the scenarios were used for a weighted daily difficulty 
average. 

Fig. 7 shows the mean difficulty in 10-min time frames for all robbers 
tests. Note the parallels to the activity in Fig. 6. A day consisting of only 
the most difficult scenario would have a daily difficulty of one. The 
mean daily difficulties seen here from D1 to D4 are 0.1329 (±0.3049), 
0.0745 (±0.0994), 0.0383 (±0.0831), and 0.0149 (±0.0525), 
respectively. 

Reconciling scenarios and robbers tests is more difficult when mul-
tiple performance factors are used. In some cases, it may be advisable to 
z-transform the performance factors to achieve comparable scaling of 
the characteristics. 

4.2.8. Evaluation step 8: Modelling accuracy based on the difficulty of the 
measurement condition 

The expected deviation of the bee counter from the true value as a 
function of the measurement condition is required. This condition is 
described by the performance factors and was previously referred to as 
‘difficulty’. Since the true value is generally not known for bee colonies, 
the robbers test provides a solution. Here the true value is equal to zero 
and the deviation from zero can be measured accurately. To determine 
the accuracy of the system for an arbitrary daily loss measurement, the 
difficulty of this measurement would first have to be defined and then a 
robbers test with the same difficulty would have to be performed. Since 
this is not possible, it is necessary to infer the difficulty from known 
robbers-test-error-difficulty combinations. 

Thus, the mean deviation from the true measurement requires 
modeling based on the difficulty of the measurement. This mean devi-
ation is equal to the standard deviation and can be easily estimated. 
However, since all robbers tests are generally of varying difficulty, only 
samples of size one are available. By linking the mean deviations of 
different trials, a robust statement can however still be made. The esti-
mator for the standard deviation with known expected value μ is given 

by σ̂ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/N
∑N

n=1(yi − μ)2
√

where yi is the measurement result of the i- 
th robbers test. For μ = 0 and N = 1, the equation can be simplified to 

σ̂ =

̅̅̅̅̅

y2
i

√

= abs(yi). 
Model selection is difficult due to the small sample size (N = 4). 

Since the data points offer little guidance, the conclusion from the 
previous steps is used. In step (4), a strong linear correlation at the 
scenario level was found between MOTA and difficulty. The correlation 
coefficient of r = − 0.8953 justifies the assumption of a linear relation-
ship not only for the accuracy of the scenarios (MOTA) and their diffi-
culty but also for the accuracy of the daily loss measures (standard 
deviation) and their difficulty. In addition, standard deviation, rather 
than variance, is modeled because it has the unit ‘bees’, as do the errors 
underlying the MOTA score. An intercept is omitted because the 

modeled standard deviation cannot be less than zero. In summary, the 
following applies to the standard deviation of the bee counter: 

abs(yi) = β1*xi + ∊i, i = 1,…, n (3)  

where xi denotes the difficulty of the robbers test. Linear regression 
yields β̂ = 12 673 (N = 4, r2 = 0.95). Note: Since the variance of the 
residuals increases with difficulty, heteroskedasticity is the result. 
However, heteroscedasticity only affects the efficiency of the estimator, 
not its unbiasedness, so it is not a concern. The estimated β̂ can now be 
used to determine the standard deviation to the daily loss measurements 
obtained with the bee counter. 

4.2.9. Evaluation step 9: Plausibility check 
In this context, reference should be made to the study by Gonsior 

et al. (2020). There, a previous model of the bee counter was assessed as 
part of an ecotoxicological trial. In an experiment, four bee colonies 
were fed over ten days with a neonicotinoid-spiked sugar solution, 
known to have sublethal effects on the flight behavior of bees. When 
comparing the number of foraging flights with those of four untreated 
control colonies, significant group differences were found. The result 
demonstrates that the system was able to show the expected effect and 
represents a general plausibility test. 

5. Discussion 

5.1. Case study 

Using scenarios is a logical consequence of the observation that the 
performance of bee counters varies with changing measurement con-
ditions. One main factor was found to have a strong effect on bee counter 
performance. A total of 59 scenarios with varying degrees of ‘crowding’ 
were drawn and commented on. Since all scenarios achieved MOTA 
scores greater than 94.01%, evaluation by observation confirmed the 
basic functionality of the bee counter. The strong correlation between 
scenarios’ MOTA scores and difficulties indicates that the crowdedness 
performance factor is highly suitable for inferring the accuracy of the 
bee counter. Although the MOTA score requires special treatment of 
scenarios for which the number of labeled objects equals zero, the 
advantage outweighs the disadvantage. Rather than using the sparse 
count events, the metric uses the underlying sources of detector and 
tracker error. 

This promising pre-evaluation justified the implementation of 
several robbers tests. Despite the long experimental period of 21 days, 
most of the robbers tests had to be rejected. Reasons for this included the 
late season and the resulting increase in rainy and cold days, but also the 
maintenance and restocking of the feed. The robbers test also shows the 
importance of the operating time of the bee counter. If the system had 

Fig. 7. To find out the difficulty of the robbers test’s measurement condition, the robbers test video data was divided into 30-s intervals. For each such interval, the 
most similar scenario was determined based on the measurable performance factors, and its difficulty was assigned. The average difficulty across all 30-s intervals of 
a robbers test trial resulted in the daily difficulty. 
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been down for ten minutes during the most active period on D1, which 
would correspond to an operating time of 99.31%, 6573 outgoing bees 
and a similar number of incoming bees would not have been recorded. 
The impact on daily loss, which is likely to be between 200 and 2000 
bees depending on season and colony size, is considerable. Thus, not 
including days with missing data is important, but reduces the number 
of valid trials. 

The utilization of the original robbers test described by Struye 
(2001), in which bees from multiple colonies rob the same robber hive, 
could solve the problem of consistent and goal-oriented bee behavior 
described by Rosenquist (2019). The robber experiments contain mo-
ments of extreme crowding and thus simulate a more realistic flight 
behavior at the robber hive. 

A total of four robbers tests were available for further analysis and 
showed that despite the high MOTA values of the scenarios, the mea-
surement of the 24-h intervals is prone to error. This is reflected in a 
mean absolute deviation of 717 (±846) bees compared to a target value 
of zero. Due to limited data availability, it was not possible to make a 
reliable statement whether the bee counter unilaterally counts more 
bees or not. The observation of a bias has been reported by several re-
searchers for other bee counters and would lead to skewed counts in and 
out, distorting the loss measurements (Ngo et al., 2019; Bermig et al., 
2020). Consequently, the reason for a preferential direction should be 
investigated and eliminated. The data further corroborate findings from 
other authors that on days with higher flight traffic, the error of the 
counter increases (Odemer, 2021). 

Since bees react to visible light, it is reasonable to use infrared light 
that is invisible to bees at night (Barker, 1972). Nevertheless, the robbers 
tests were performed here exclusively with white light and conse-
quently, the performance factor ‘lighting’ was omitted. This had no 
consequences for the robbers test since no bees are expected at the 
feeder during the infrared hours anyway. This also means that the in-
fluence of the factor could not have been determined at all. However, for 
conducting experiments in the realistic scenario, the lighting factor is 
potentially important, since under certain circumstances bees may stay 
near the entrance after dark (Odemer, 2021). One way out would be to 
conduct additional robbers testing experiments with all-day infrared 
lighting. However, this would have required modifications to the system 
that were beyond the scope of this case study. Therefore, the regression 
model only applies to the trials that do not require infrared light. 

Due to the small number of valid robbers tests, the model had to be 
derived from considerations and could not be checked directly on the 
data. The results are plausible and consistent with expectations. 

To determine whether the tested bee counter is suitable for regula-
tory risk assessment and the implementation under Good Laboratory 
Practice (GLP), the error of the counter must be comprehensible and 
considered. Assuming that the robbers tests have a similar level of dif-
ficulty to that of full-sized bee colonies, the expected error in difficult 
cases may exceed 1500 bees. Thus, at the current stage of development 
(September 2021), it is not possible to determine accurate daily losses or 
bee mortality as defined by regulatory requirements. The estimated 
absolute error of the system under field conditions is too large to detect 
small differences in colony population dynamics. In addition to 
improving the bee counter, it would be possible to simplify the mea-
surement conditions. For example, limiting the number of colonies to 
smaller sizes (see Spangler (1969)) or by making structural changes to 
the flight board that forms the camera’s field of view to reduce 
crowding. 

Further robbers tests are planned for 2022. An improved camera 
system promises to yield further insight into the feasibility of producing 
loss assessments suitable for regulatory purposes. 

5.2. General 

To date, there is no method to determine daily honey bee loss or 
background mortality with the accuracy required by the 2013 EFSA bee 

guidance document (European Food Safety Authority, 2013). Existing 
bee counters are not sufficiently suitable for this purpose, especially 
because data on accuracy and its evaluation under field conditions are 
not given. Not least because a suitable standardized evaluation protocol 
for the determination of accuracy has not been available (Odemer, 
2021). 

Although there were approaches to evaluate bee counters, the results 
could not be used to determine the accuracy of daily loss measurements. 
It was argued that (1) evaluation procedures based only on sample 
evaluation do not reveal bias or provide an indication of the accuracy of 
daily loss measurements and that (2) evaluation procedures based only 
on robbers tests cannot distinguish with confidence between inoperative 
and operative counters and do not provide accuracy measurements 
under realistic conditions. 

A combination of the two approaches could, however, solve these 
problems. Hence, the protocol presented here balances specificity with 
adaptability to other types of designs. It was tested by being applied to a 
commercial counting device where it became obvious that requirements 
for accurate loss measurement are high. Even minimal deviations per 
count event accumulate because the reference quantity (activity) is two 
orders of magnitude larger than the quantity of interest (loss). 

Apart from that, small inaccuracies in the determination of individ-
ual bee movements can have serious consequences for the calculation of 
the daily loss. In Struye’s BeeSCAN, the activity was about a hundred 
times the measured daily loss (Struye, 2001). Given this factor and the 
relatively small reference size, effects such as those in Rickli et al. 
(1989), Bermig et al. (2020) can quickly occur. There, promising bee 
counters led to unrealistic results in the determination of daily losses. 
The first study reported losses that exceeded expected results by a factor 
of five, while the second reported a gain of over 14,000 bees in just one 
day. In both cases, small deviations, not measurable in short periods, 
added up over the day due to the sheer volume of entries and exits. 

To detect field-relevant changes in daily losses, bee counters must 
have no more than 1 error per 1000 entries or exits, depending on colony 
size and requirements. These numbers assume 105,000 flights, a colony 
size of 30,000 bees, and a natural mortality rate of 3.75% (European 
Food Safety Authority (EFSA), 2020). If a bee counter fails the pre- 
evaluation (sample evaluation), the system must be redesigned to 
incorporate learnings and improvements. No generalized threshold has 
been established to indicate whether or not the pre-evaluation has 
failed. Instead, it is recommended to report the entire evaluation pro-
cess. Whether a bee counter is useful or not depends on the intended 
application. The result of the evaluation shows which errors are to be 
expected under which measuring conditions. Whether these errors are 
acceptable or not is ultimately decided by the potential user: If there is a 
bee counter where the evaluation has shown that daily loss measure-
ments with an accuracy of ±100 bees can be expected under the existing 
measuring conditions, the inaccuracy corresponds to about 10% of the 
expected background mortality in the previous example. 

Future designs of counters must be technically sound and capable of 
operating efficiently and autonomously under field conditions (Odemer, 
2021). In addition, it is necessary to generate validated data with a 
standardized protocol that meets scientific requirements and allows 
accurate conclusions to be drawn about the daily loss of foragers. 
Without this standardization, no progress in this field will be possible. 
However, with the technological advancements that exist today and will 
exist in the future, such standardization should be readily 
implementable. 

6. Conclusion 

High-quality data on honey bee background mortality are currently 
unavailable due to a lack of methodology to generate them. With the 
here presented evaluation for daily loss measurements, a protocol was 
introduced that should be suitable for determining the accuracy of 
electronic bee counters under field conditions in a standardized way. 
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The protocol combines existing approaches into a new, harmonized 
method that can be performed regardless of how the bee counter oper-
ates. The thorough evaluation is time-consuming but only needs to be 
done once for a bee counter system. The work thus makes innovations in 
practice measurable and creates the basis for comparability of bee 
counting systems, enabling faster progression of the sector. Hence, it 
should be possible to advance the field by developing counters that meet 
or even exceed scientific and regulatory requirements. 
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